Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 176 | 3 | 277-289

Tytuł artykułu

The universal minimal system for the group of homeomorphisms of the Cantor set

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Each topological group G admits a unique universal minimal dynamical system (M(G),G). For a locally compact noncompact group this is a nonmetrizable system with a rich structure, on which G acts effectively. However there are topological groups for which M(G) is the trivial one-point system (extremely amenable groups), as well as topological groups G for which M(G) is a metrizable space and for which one has an explicit description. We show that for the topological group G = Homeo(E) of self-homeomorphisms of the Cantor set E, with the topology of uniform convergence, the universal minimal system (M(G),G) is isomorphic to Uspenskij's "maximal chains" dynamical system (Φ,G) in $2^{2^E}$. In particular it follows that M(G) is homeomorphic to the Cantor set. Our main tool is the "dual Ramsey theorem", a corollary of Graham and Rothschild's Ramsey's theorem for n-parameter sets. This theorem is used to show that every minimal symbolic G-system is a factor of (Φ,G), and then a general procedure for analyzing G-actions of zero-dimensional topological groups is applied to show that (M(G),G) is isomorphic to (Φ,G).

Twórcy

autor
  • Department of Mathematics, Tel Aviv University, Ramat Aviv, Israel
autor
  • Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-6