PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 176 | 1 | 25-45
Tytuł artykułu

Applications of some strong set-theoretic axioms to locally compact T₅ and hereditarily scwH spaces

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Under some very strong set-theoretic hypotheses, hereditarily normal spaces (also referred to as T₅ spaces) that are locally compact and hereditarily collectionwise Hausdorff can have a highly simplified structure. This paper gives a structure theorem (Theorem 1) that applies to all such ω₁-compact spaces and another (Theorem 4) to all such spaces of Lindelöf number ≤ ℵ₁. It also introduces an axiom (Axiom F) on crowding of functions, with consequences (Theorem 3) for the crowding of countably compact subspaces in certain continuous preimages of ω₁. It also exposes (Theorem 2) the fine structure of perfect preimages of ω₁ which are T₅ and hereditarily collectionwise Hausdorff. In these theorems, "T₅ and hereditarily collectionwise Hausdorff" is weakened to "hereditarily strongly collectionwise Hausdorff." Corollaries include the consistency, modulo large cardinals, of every hereditarily strongly collectionwise Hausdorff manifold of dimension > 1 being metrizable. The concept of an alignment plays an important role in formulating several of the structure theorems.
Słowa kluczowe
Twórcy
  • Department of Mathematics, University of South Carolina, Columbia, SC 29208, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-1-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.