Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The basic question of this paper is: If you consider two iterated function systems close to each other in an appropriate topology, are the dimensions of their respective invariant sets close to each other? It is well known that the Hausdorff dimension (and Lebesgue measure) of the invariant set does not depend continuously on the iterated function system. Our main result is that (with a restriction on the "non-conformality" of the transformations) the Hausdorff dimension is a lower semicontinuous function in the C¹-topology of the transformations of the iterated function system. The same question is raised of the Lebesgue measure of the invariant set. Here we show that it is an upper semicontinuous function of the transformations. We also include some corollaries of these results, such as the equality of box and Hausdorff dimensions in these cases.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
113-131
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Queen's University, Kingston, Ontario, Canada
autor
- Department of Mathematical Sciences, Portland State University, Portland, OR 97207, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm173-2-2