Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 173 | 2 | 113-131

Tytuł artykułu

Semicontinuity of dimension and measure for locally scaling fractals

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The basic question of this paper is: If you consider two iterated function systems close to each other in an appropriate topology, are the dimensions of their respective invariant sets close to each other? It is well known that the Hausdorff dimension (and Lebesgue measure) of the invariant set does not depend continuously on the iterated function system. Our main result is that (with a restriction on the "non-conformality" of the transformations) the Hausdorff dimension is a lower semicontinuous function in the C¹-topology of the transformations of the iterated function system. The same question is raised of the Lebesgue measure of the invariant set. Here we show that it is an upper semicontinuous function of the transformations. We also include some corollaries of these results, such as the equality of box and Hausdorff dimensions in these cases.

Słowa kluczowe

Rocznik

Tom

173

Numer

2

Strony

113-131

Opis fizyczny

Daty

wydano
2002

Twórcy

autor
  • Queen's University, Kingston, Ontario, Canada
  • Department of Mathematical Sciences, Portland State University, Portland, OR 97207, U.S.A.

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm173-2-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.