EN
When the set of closed subspaces of C(Δ), where Δ is the Cantor set, is equipped with the standard Effros-Borel structure, the graph of the basic relations between Banach spaces (isomorphism, being isomorphic to a subspace, quotient, direct sum,...) is analytic non-Borel. Many natural families of Banach spaces (such as reflexive spaces, spaces not containing ℓ₁(ω),...) are coanalytic non-Borel. Some natural ranks (rank of embedding, Szlenk indices) are shown to be coanalytic ranks. Applications are given to universality questions. Analogous results are shown for basic sequences modulo equivalence.