EN
We prove two theorems concerning strong compactness, measurability, and the class of supercompact cardinals. We begin by showing, relative to the appropriate hypotheses, that it is consistent non-trivially for every supercompact cardinal to be the limit of (non-supercompact) strongly compact cardinals. We then show, relative to the existence of a non-trivial (proper or improper) class of supercompact cardinals, that it is possible to have a model with the same class of supercompact cardinals in which every measurable cardinal δ is $2^{δ}$ strongly compact.