EN
The linear refinement number 𝔩𝔯 is the minimal cardinality of a centered family in $[ω]^{ω}$ such that no linearly ordered set in $([ω]^{ω},⊆ *)$ refines this family. The linear excluded middle number 𝔩𝔵 is a variation of 𝔩𝔯. We show that these numbers estimate the critical cardinalities of a number of selective covering properties. We compare these numbers to the classical combinatorial cardinal characteristics of the continuum. We prove that 𝔩𝔯 = 𝔩𝔵 = 𝔡 in all models where the continuum is at most ℵ₂, and that the cofinality of 𝔩𝔯 is uncountable. Using the method of forcing, we show that 𝔩𝔯 and 𝔩𝔵 are not provably equal to 𝔡, and rule out several potential bounds on these numbers. Our results solve a number of open problems.