EN
We consider zero entropy $C^{∞}$-diffeomorphisms on compact connected $C^{∞}$-manifolds. We introduce the notion of polynomial growth of the derivative for such diffeomorphisms, and study it for diffeomorphisms which additionally preserve a smooth measure. We show that if a manifold M admits an ergodic diffeomorphism with polynomial growth of the derivative then there exists a smooth flow with no fixed point on M. Moreover, if dim M = 2, then necessarily M = 𝕋² and the diffeomorphism is $C^{∞}$-conjugate to a skew product on the 2-torus.