Warianty tytułu
Języki publikacji
Abstrakty
It is shown that maximal truncations of nonconvolution L²-bounded singular integral operators with kernels satisfying Hörmander's condition are weak type (1,1) and $L^{p}$-bounded for 1 < p< ∞. Under stronger smoothness conditions, such estimates can be obtained using a generalization of Cotlar's inequality. This inequality is not applicable here and the point of this article is to treat the boundedness of such maximal singular integral operators in an alternative way.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
167-177
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm96-2-2