Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 93 | 2 | 209-235

Tytuł artykułu

Join-semilattices with two-dimensional congruence amalgamation

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We say that a ⟨∨,0⟩-semilattice S is conditionally co-Brouwerian if (1) for all nonempty subsets X and Y of S such that X ≤ Y (i.e. x ≤ y for all ⟨x,y⟩ ∈ X × Y), there exists z ∈ S such that X ≤ z ≤ Y, and (2) for every subset Z of S and all a, b ∈ S, if a ≤ b ∨ z for all z ∈ Z, then there exists c ∈ S such that a ≤ b ∨ c and c ≤ Z. By restricting this definition to subsets X, Y, and Z of less than κ elements, for an infinite cardinal κ, we obtain the definition of a conditionally κ-co-Brouwerian ⟨∨,0⟩-semilattice.
We prove that for every conditionally co-Brouwerian lattice S and every partial lattice P, every ⟨∨,0⟩-homomorphism $φ: Con_{c} P → S$ can be lifted to a lattice homomorphism f: P → L for some relatively complemented lattice L. Here, $Con_{c} P$ denotes the ⟨∨,0⟩-semilattice of compact congruences of P.
We also prove a two-dimensional version of this result, and we establish partial converses of our results and various of their consequences in terms of congruence lattice representation problems. Among these consequences, for every infinite regular cardinal κ and every conditionally κ-co-Brouwerian S of size κ, there exists a relatively complemented lattice L with zero such that $Con_{c}L ≅ S$.

Słowa kluczowe

Twórcy

  • CNRS, UMR 6139, Département de Mathématiques, BP 5186, Université de Caen, Campus 2, 14032 Caen Cedex, France

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-cm93-2-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.