Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For 0 ≤ α < 1, an operator U ∈ L(X,Y) is called a rank α operator if $xₙ → \limits^{τ_{α}} x$ implies Uxₙ → Ux in norm. We give some results on rank α operators, including an interpolation result and a characterization of rank α operators U: C(T,X) → Y in terms of their representing measures.
Słowa kluczowe
Kategorie tematyczne
- 46E15: Banach spaces of continuous, differentiable or analytic functions
- 47B38: Operators on function spaces (general)
- 47A80: Tensor products of operators
- 46M05: Tensor products
- 46A32: Spaces of linear operators; topological tensor products; approximation properties
- 47B10: Operators belonging to operator ideals (nuclear, p -summing, in the Schatten-von Neumann classes, etc.)
- 46B28: Spaces of operators; tensor products; approximation properties
Czasopismo
Rocznik
Tom
Numer
Strony
255-262
Opis fizyczny
Daty
wydano
2002
Twórcy
autor
- Department of Mathematics, University of Constanţa, 8700 Constanţa, Romania
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm91-2-5