EN
Let k ≥ 1 denote any positive rational integer. We give formulae for the sums
$S_{odd}(k,f) = ∑_{χ(-1)=-1} |L(k,χ)|²$
(where χ ranges over the ϕ(f)/2 odd Dirichlet characters modulo f > 2) whenever k ≥ 1 is odd, and for the sums
$S_{even}(k,f) = ∑_{χ(-1) = +1} |L(k,χ)|²$
(where χ ranges over the ϕ(f)/2 even Dirichlet characters modulo f>2) whenever k ≥ 1 is even.