EN
Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that
$∫_{𝓗} |M_{ω}f(z)|^{q} dμ(z) ≤ C(∫_{𝓗} |f(z)|^{p} ω(z)dV(z))^{q/p}$
and
$μ({z ∈ 𝓗 : Mf(z) > λ}) ≤ C/(λ^{q})(∫_{𝓗} |f(z)|^{p} ω(z)dV(z))^{q/p}$,
where $M_{ω}$ is the weighted Hardy-Littlewood maximal function on the upper half-plane 𝓗 and 1 ≤ p,q <; ∞.