EN
Let M² denote a Minkowski plane, i.e., an affine plane whose metric is a gauge induced by a compact convex figure B which, as a unit circle of M², is not necessarily centered at the origin. Hence the self-perimeter of B has two values depending on the orientation of measuring it. We prove that this self-perimeter of B is bounded from above by the four-fold self-diameter of B. In addition, we derive a related non-trivial result on Minkowski planes whose unit circles are quadrangles.