Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 140 | 2 | 183-204

Tytuł artykułu

A variant theory for the Gorenstein flat dimension

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper discusses a variant theory for the Gorenstein flat dimension. Actually, since it is not yet known whether the category 𝓖𝓕(R) of Gorenstein flat modules over a ring R is projectively resolving or not, it appears legitimate to seek alternate ways of measuring the Gorenstein flat dimension of modules which coincide with the usual one in the case where 𝓖𝓕(R) is projectively resolving, on the one hand, and present nice behavior for an arbitrary ring R, on the other. In this paper, we introduce and study one of these candidates called the generalized Gorenstein flat dimension of a module M and denoted by $GGfd_{R}(M)$ via considering exact sequences of modules of finite flat dimension. The new entity stems naturally from the very definition of Gorenstein flat modules. It turns out that the generalized Gorenstein flat dimension enjoys nice behavior in the general setting. First, for each R-module M, we prove that $GGfd_{R}(M) = Gid_{R}(Hom_{ℤ} (M,ℚ /ℤ))$ whenever $GGf_{R}(M)$ is finite. Also, we show that 𝓖𝓕(R) is projectively resolving if and only if the Gorenstein flat dimension and the generalized Gorenstein flat dimension coincide. In particular, if R is a right coherent ring, then $GGfd_{R}(M) = Gfd_{R}(M)$ for any R-module M. Moreover, the global dimension associated to the generalized Gorenstein flat dimension, called the generalized Gorenstein weak global dimension and denoted by GG-wgldim(R), turns out to be the best counterpart of the classical weak global dimension in Gorenstein homological algebra. In fact, it is left-right symmetric and it is related to the cohomological invariants r-sfli(R) and l-sfli(R) by the formula
GG-wgldim(R) = max{r-sfli(R),l-sfli(R)}.

Słowa kluczowe

Twórcy

  • Department of Mathematics, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-cm140-2-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.