Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We describe the representation-infinite blocks B of the group algebras KG of finite groups G over algebraically closed fields K for which all simple modules are periodic with respect to the action of the syzygy operators. In particular, we prove that all such blocks B are periodic algebras of period 4. This confirms the periodicity conjecture for blocks of group algebras.
Słowa kluczowe
Kategorie tematyczne
- 16D50: Injective modules, self-injective rings
- 16G60: Representation type (finite, tame, wild, etc.)
- 20C20: Modular representations and characters
- 16E30: Homological functors on modules (Tor, Ext, etc.)
- 20C05: Group rings of finite groups and their modules
- 16G70: Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
Czasopismo
Rocznik
Tom
Numer
Strony
283-294
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Mathematical Institute, University of Oxford, ROQ, Oxford OX2 6GG, United Kingdom
autor
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm138-2-12