EN
We suggest a method of constructing decompositions of a topological space X having an open subset homeomorphic to the space (ℝⁿ,τ), where n is an integer ≥ 1 and τ is any admissible extension of the Euclidean topology of ℝⁿ (in particular, X can be a finite-dimensional separable metrizable manifold), into a countable family ℱ of sets (dense in X and zero-dimensional in the case of manifolds) such that the union of each non-empty proper subfamily of ℱ does not have the Baire property in X.