EN
We present two cyclic inequalities involving the classical Γ-function of Euler and the (unweighted) power mean <br> $M_t(a,b) = ((a^t + b^t)/2)^{1/t}$ (t ≠ 0), M₀(a,b) = √(ab) (a,b>0).<br>(I) Let 2 ≤ n ∈ ℕ and r ∈ ℝ. The inequality <br> $∏_{j=1}^{n} Γ(1/(1 + M_r(x_j,x_{j+1}))) ≤ ∏_{j=1}^{n} Γ(1/(1 + x_j)) (x_{n+1} = x₁)$ <br> holds for all $x_j > 0$ (j = 1,..., n) if and only if r ≤ 0. (II) Let 2 ≤ n ∈ ℕ and s ∈ ℝ. The inequality <br> $∏_{j=1}^{n} Γ(1/(1 + x_j)) ≤ ∏_{j=1}^{n} Γ(1/(1 + M_s(x_j,x_{j+1}))) (x_{n+1} = x₁)$ <br> is valid for all $x_j > 0$ (j = 1,...,n) if and only if <br> $s ≥ max_{0<x<1} P(x) = 1.0309...$. <br> Here, <br> P(x) = 2x - 1 + x(x-1) ψ'(x)/ψ(x) and ψ = Γ'/Γ.