EN
We construct a Lipschitz function f on X = ℝ ² such that, for each 0 ≠ v ∈ X, the function f is $C^{∞}$ smooth on a.e. line parallel to v and f is Gâteaux non-differentiable at all points of X except a first category set. Consequently, the same holds if X (with dimX > 1) is an arbitrary Banach space and "a.e." has any usual "measure sense". This example gives an answer to a natural question concerning the author's recent study of linearly essentially smooth functions (which generalize essentially smooth functions of Borwein and Moors).