EN
Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts ${aⁿ/n}_{n=1}^{∞}$ is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length $cN^{-0.475}$ contains at least one fractional part {Q(αⁿ)/n}, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.