One-parameter semigroups in the convolution algebra of rapidly decreasing distributions
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is devoted to infinitely differentiable one-parameter convolution semigroups in the convolution algebra $𝓞'_{C}(ℝⁿ;M_{m×m})$ of matrix valued rapidly decreasing distributions on ℝⁿ. It is proved that $G ∈ 𝓞'_{C}(ℝⁿ;M_{m×m})$ is the generating distribution of an i.d.c.s. if and only if the operator $∂_{t} ⊗ 𝟙_{m×m} - G∗ $ on $ℝ^{1+n}$ satisfies the Petrovskiĭ condition for forward evolution. Some consequences are discussed.