We study the blow-up of solutions to the focusing Hartree equation $iu_{t} + Δu + (|x|^{-γ}*|u|²)u = 0$. We use the strategy derived from the almost finite speed of propagation ideas devised by Bourgain (1999) and virial analysis to deduce that the solution with negative energy (E(u₀) < 0) blows up in either finite or infinite time. We also show a result similar to one of Holmer and Roudenko (2010) for the Schrödinger equations using techniques from scattering theory.