EN
This note aims at providing some information about the concept of a strongly proximal compact transformation semigroup. In the affine case, a unified approach to some known results is given. It is also pointed out that a compact flow (X,𝓢) is strongly proximal if (and only if) it is proximal and every point of X has an 𝓢-strongly proximal neighborhood in X. An essential ingredient, in the affine as well as in the nonaffine case, turns out to be the existence of a unique minimal subset.