PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 115 | 2 | 147-157
Tytuł artykułu

Prime numbers with Beatty sequences

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A study of certain Hamiltonian systems has led Y. Long to conjecture the existence of infinitely many primes which are not of the form p = 2⌊αn⌋ + 1, where 1 < α < 2 is a fixed irrational number. An argument of P. Ribenboim coupled with classical results about the distribution of fractional parts of irrational multiples of primes in an arithmetic progression immediately implies that this conjecture holds in a much more precise asymptotic form. Motivated by this observation, we give an asymptotic formula for the number of primes p = q⌊αn + β⌋ + a with n ≤ N, where α,β are real numbers such that α is positive and irrational of finite type (which is true for almost all α) and a,q are integers with $0 ≤ a < q ≤ N^κ$ and gcd(a,q) = 1, where κ > 0 depends only on α. We also prove a similar result for primes p = ⌊αn + β⌋ such that p ≡ a(mod q).
Słowa kluczowe
Twórcy
  • Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A.
  • Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm115-2-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.