EN
A module M is called finendo (cofinendo) if M is finitely generated (respectively, finitely cogenerated) over its endomorphism ring. It is proved that if R is any hereditary ring, then the following conditions are equivalent: (a) Every right R-module is finendo; (b) Every left R-module is cofinendo; (c) R is left pure semisimple and every finitely generated indecomposable left R-module is cofinendo; (d) R is left pure semisimple and every finitely generated indecomposable left R-module is finendo; (e) R is of finite representation type. Moreover, if R is an arbitrary ring, then (a) ⇒ (b) ⇔ (c), and any ring R satisfying (c) has a right Morita duality.