PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 113 | 1 | 105-117
Tytuł artykułu

Absolutely convergent Fourier series and generalized Lipschitz classes of functions

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the order of magnitude of the modulus of continuity of a function f with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order that f belong to one of the generalized Lipschitz classes Lip(α,L) and Lip(α,1/L), where 0 ≤ α ≤ 1 and L = L(x) is a positive, nondecreasing, slowly varying function such that L(x) → ∞ as x → ∞. For example, a 2π-periodic function f is said to belong to the class Lip(α,L) if
$|f(x+h) - f(x)| ≤ Ch^{α}L(1/h)$ for all x ∈ 𝕋, h > 0,
where the constant C does not depend on x and h. The above sufficient conditions are also necessary in the case of a certain subclass of Fourier coefficients. As a corollary, we deduce that if a function f with Fourier coefficients in this subclass belongs to one of these generalized Lipschitz classes, then the conjugate function f̃ also belongs to the same generalized Lipschitz class.
Słowa kluczowe
Twórcy
  • Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm113-1-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.