Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 111 | 2 | 221-282

Tytuł artykułu

The multiplicity problem for indecomposable decompositions of modules over domestic canonical algebras

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Given a module M over a domestic canonical algebra Λ and a classifying set X for the indecomposable Λ-modules, the problem of determining the vector $m(M) = (m_{x})_{x∈X} ∈ ℕ^{X}$ such that $M ≅ ⨁_{x∈X} X_{x}^{m_{x}}$ is studied. A precise formula for $dim_{k} Hom_{Λ}(M,X)$, for any postprojective indecomposable module X, is computed in Theorem 2.3, and interrelations between various structures on the set of all postprojective roots are described in Theorem 2.4. It is proved in Theorem 2.2 that a general method of finding vectors m(M) presented by the authors in Colloq. Math. 107 (2007) leads to algorithms with the complexity $𝒪((dim_{k} M)⁴)$. A precise description of algorithms determining the multiplicities $m(M)_{x}$ for postprojective roots x ∈ X is given (Algorithms 6.1, 6.2 and 6.3).

Słowa kluczowe

Twórcy

autor
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
  • Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-cm111-2-6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.