Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We investigate the $L_{p}$-spectrum of linear operators defined consistently on $L_{p}(Ω)$ for p₀ ≤ p ≤ p₁, where (Ω,μ) is an arbitrary σ-finite measure space and 1 ≤ p₀ < p₁ ≤ ∞. We prove p-independence of the $L_{p}$-spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric d on (Ω,μ); the balls with respect to this semi-metric are required to satisfy a subexponential volume growth condition. We show how previous results on $L_{p}$-spectral independence can be treated as special cases of our results and give examples-including strictly elliptic operators in Euclidean space and generators of semigroups that satisfy (generalized) Gaussian bounds-to indicate improvements.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
129-146
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Mathematisches Institut I, Universität Karlsruhe, Englerstraße 2, D-76128 Karlsruhe, Germany
autor
- Institut für Analysis, Fachrichtung Mathematik, Technische Universität Dresden, D-01062 Dresden, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm109-1-11