PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 106 | 2 | 177-195
Tytuł artykułu

Constructing spaces of analytic functions through binormalizing sequences

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
H. Jiang and C. Lin [Chinese Ann. Math. 23 (2002)] proved that there exist infinitely many Banach spaces, called refined Besov spaces, lying strictly between the Besov spaces $B_{p,q}^s(ℝⁿ)$ and $⋃_{t>s}B_{p,q}^t(ℝⁿ)$. In this paper, we prove a similar result for the analytic Besov spaces on the unit disc 𝔻. We base our construction of the intermediate spaces on operator theory, or, more specifically, the theory of symmetrically normed ideals, introduced by I. Gohberg and M. Krein. At the same time, we use these spaces as models to provide criteria for several types of operators on H², including Hankel and composition operators, to belong to certain symmetrically normed ideals generated by binormalizing sequences.
Słowa kluczowe
Twórcy
autor
  • Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan
autor
  • Department of Information Technology, Meiho Institute of Technology, Pington, Taiwan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-cm106-2-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.