EN
The first author has recently proved that if f: X → Y is a k-dimensional map between compacta and Y is p-dimensional (0 ≤ k, p < ∞), then for each 0 ≤ i ≤ p + k, the set of maps g in the space $C(X,I^{p+2k+1-i})$ such that the diagonal product $f×g: X → Y×I^{p+2k+1-i}$ is an (i+1)-to-1 map is a dense $G_{δ}$-subset of $C(X,I^{p+2k+1-i})$. In this paper, we prove that if f: X → Y is as above and $D_{j}$ (j = 1,..., k) are superdendrites, then the set of maps h in $C(X,∏_{j=1}^{k} D_{j}×I^{p+1-i})$ such that $f×h: X → Y×(∏_{j=1}^{k} D_{j}×I^{p+1-i})$ is (i+1)-to-1 is a dense $G_{δ}$-subset of $C(X,∏_{j=1}^{k} D_{j}×I^{p+1-i})$ for each 0 ≤ i ≤ p.