EN
The notion of an absolute n-fold hyperspace suspension is introduced. It is proved that these hyperspaces are unicoherent Peano continua and are dimensionally homogeneous. It is shown that the 2-sphere is the only finite-dimensional absolute 1-fold hyperspace suspension. Furthermore, it is shown that there are only two possible finite-dimensional absolute n-fold hyperspace suspensions for each n ≥ 3 and none when n = 2. Finally, it is shown that infinite-dimensional absolute n-fold hyperspace suspensions must be unicoherent Hilbert cube manifolds.