PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Banach Center Publications

2013 | 99 | 1 | 87-110
Tytuł artykułu

### Refinement type equations: sources and results

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been proved recently that the two-direction refinement equation of the form
$f(x) = ∑_{n∈ }c_{n,1}f(kx-n) + ∑_{n∈ℤ}c_{n,-1}f(-kx-n)$
can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation $f(x) = ∑_{n∈ℤ}cₙf(kx-n)$, which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation $f(x) = ∫_{ℝ}c(y)f(kx-y)dy$ has also various interesting applications. This equation is a special case of the continuous refinement type equation of the form
$f(x) = ∫_{Ω} |K(ω)| f(K(ω)x-L(ω)) dP(ω)$,
which has been studied recently in connection with probability theory. The purpose of this paper is to give a survey on the above refinement type equations. We begin with a brief introduction of types of refinement equations. In the first part we present several problems from different areas of mathematics which lead to the problem of the existence/nonexistence of integrable solutions of refinement type equations. In the second part we discuss and collect recent results on integrable solutions of refinement type equations, including some necessary and sufficient conditions for the existence/nonexistence of integrable solutions of the two-direction refinement equation. Finally, we say a few words on the existence of extremely non-measurable solutions of the two-direction refinement equation.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
87-110
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
• Institute of Mathematics, University of Silesia, Bankowa 14, PL-40-007 Katowice, Poland
autor
• Institute of Mathematics, University of Silesia, Bankowa 14, PL-40-007 Katowice, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory