EN
Let (Ω,Σ,μ) be a finite measure space and let X be a real Banach space. Let $L^Φ(X)$ be the Orlicz-Bochner space defined by a Young function Φ. We study the relationships between Dunford-Pettis operators T from L¹(X) to a Banach space Y and the compactness properties of the operators T restricted to $L^Φ(X)$. In particular, it is shown that if X is a reflexive Banach space, then a bounded linear operator T:L¹(X) → Y is Dunford-Pettis if and only if T restricted to $L^∞(X)$ is $(τ(L^∞(X),L¹(X*)),||·||_Y)$-compact.