Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree (T, d) is a metric space such that between any two of its points there is a unique arc that is isometric to an interval in ℝ. We begin our investigation by examining isometric embeddings of metric trees into Banach spaces. We then investigate the possible images x₀ = π((x₁ + ... + xₙ)/n), where π is a contractive retraction from the ambient Banach space X onto T (such a π always exists) in order to understand the "metric" barycenter of a family of points x₁,...,xₙ in a tree T. Further, we consider the metric properties of trees such as their type and cotype. We identify various measures of compactness of metric trees (their covering numbers, ϵ-entropy and Kolmogorov widths) and the connections between them. Additionally, we prove that the limit of the sequence of Kolmogorov widths of a metric tree is equal to its ball measure of non-compactness.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
9-34
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics, Claremont McKenna College, Claremont, CA 91711, U.S.A.
autor
- Department of Mathematics, University of California-Irvine, Irvine, CA 92697, U.S.A.
- Department of Mathematics,, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc91-0-1