PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 91 | 1 | 9-34
Tytuł artykułu

Some results on metric trees

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree (T, d) is a metric space such that between any two of its points there is a unique arc that is isometric to an interval in ℝ. We begin our investigation by examining isometric embeddings of metric trees into Banach spaces. We then investigate the possible images x₀ = π((x₁ + ... + xₙ)/n), where π is a contractive retraction from the ambient Banach space X onto T (such a π always exists) in order to understand the "metric" barycenter of a family of points x₁,...,xₙ in a tree T. Further, we consider the metric properties of trees such as their type and cotype. We identify various measures of compactness of metric trees (their covering numbers, ϵ-entropy and Kolmogorov widths) and the connections between them. Additionally, we prove that the limit of the sequence of Kolmogorov widths of a metric tree is equal to its ball measure of non-compactness.
Słowa kluczowe
Twórcy
  • Department of Mathematics, Claremont McKenna College, Claremont, CA 91711, U.S.A.
  • Department of Mathematics, University of California-Irvine, Irvine, CA 92697, U.S.A.
  • Department of Mathematics,, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc91-0-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.