Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We discuss the definitions of singular solutions (in the form of integral identities) to systems of conservation laws such as shocks, δ-, δ'-, and $δ^{(n)}$-shocks (n = 2,3,...). Using these definitions, the Rankine-Hugoniot conditions for δ- and δ'-shocks are derived. The weak asymptotics method for the solution of the Cauchy problems admitting δ- and δ'-shocks is briefly described. The algebraic aspects of such singular solutions are studied. Namely, explicit formulas for flux-functions of singular solutions are computed. Though the flux-functions are nonlinear, they can be considered as "right" singular superpositions of distributions, thus being well defined Schwartzian distributions. Therefore, singular solutions of Cauchy problems generate algebraic relations between their distributional components
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
251-266
Opis fizyczny
Daty
wydano
2010
Twórcy
autor
- Department of Mathematics, St.-Petersburg State Architecture, and Civil Engineering University, 2 Krasnoarmeiskaya 4, 190005, St. Petersburg, Russia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc88-0-20