PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 87 | 1 | 115-140
Tytuł artykułu

Differential and integral calculus for a Schauder basis on a fractal set (I) (Schauder basis 80 years after)

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we introduce a concept of Schauder basis on a self-similar fractal set and develop differential and integral calculus for them. We give the following results: (1) We introduce a Schauder/Haar basis on a self-similar fractal set (Theorems I and I'). (2) We obtain a wavelet expansion for the L²-space with respect to the Hausdorff measure on a self-similar fractal set (Theorems II and II'). (3) We introduce a product structure and derivation on a self-similar fractal set (Theorem III). (4) We give the Taylor expansion theorem on a fractal set (Theorem IV and IV'). (5) By use of the Taylor expansion for wavelet functions, we introduce basic functions, for example, exponential and trigonometrical functions, and discuss the relationship between the usual and introduced corresponding special functions (Theorem V). (6) Finally we discuss the relationship between the wavelet functions and the generating functions of the dynamical systems on a fractal set and show that our wavelet expansions can describe several fluctuations observed in nature.
Słowa kluczowe
Twórcy
  • Institute of Physics, University of Łódź, Pomorska 149/53, PL-90-236 Łódź, Poland
  • Institute of Mathematics, Polish Academy of Sciences, Łódź Branch, Banacha 22, PL-90-238 Łódź, Poland
  • Department of Computer and System Analysis, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, 156-8550 Setagaya-ku,Tokyo, Japan
autor
  • Department of Computer and System Analysis, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, 156-8550 Setagaya-ku,Tokyo, Japan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc87-0-11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.