PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 86 | 1 | 45-58
Tytuł artykułu

Uniqueness and local existence of solutions to an approximate system of a 1D simplified tumor invasion model

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, we consider an approximate system of one-dimensional simplified tumor invasion model, which was originally proposed by Chaplain and Anderson in [chaplain-anderson-03]. The simplified tumor invasion model is composed of PDE and ODE. Actually, the PDE is the balance equation of the density of tumor cells and the ODE describes the dynamics of concentration of extracellular matrix. In this model, we take into account that the random motility of the density of tumor cells is given by a function of space and time, that is, it is not a positive constant. Moreover, the PDE contains a (nonlinear) function which describes the proliferation as well as the apoptosis of tumor cells. Our main objective is to give the local existence and uniqueness of the solutions to the approximate system.
Słowa kluczowe
Rocznik
Tom
86
Numer
1
Strony
45-58
Opis fizyczny
Daty
wydano
2009
Twórcy
  • Interdisciplinary Centre for Mathematical and Computational Modelling, Warsaw University, Pawińskiego 5a, 02-106 Warszawa, Poland
autor
  • Department of Electronic Engineering and Computer Science, School of Engineering, Kinki University, 1 Takayaumenobe, Higashihiroshimashi, Hiroshima, 739-2116, Japan
  • Interdisciplinary Centre for Mathematical and Computational Modelling, Warsaw University, Pawińskiego 5a, 02-106 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc86-0-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.