Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The classification of class VII surfaces is a very difficult classical problem in complex geometry. It is considered by experts to be the most important gap in the Enriques-Kodaira classification table for complex surfaces. The standard conjecture concerning this problem states that any minimal class VII surface with b₂ > 0 has b₂ curves. By the results of [Ka1]-[Ka3], [Na1]-[Na3], [DOT], [OT] this conjecture (if true) would solve the classification problem completely. We explain a new approach (based on techniques from Donaldson theory) to prove existence of curves on class VII surfaces, and we present recent results obtained using this approach.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
109-120
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- LATP, CMI, Université de Provence, 39 Rue Frédéric Joliot-Curie, 13453 Marseille, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-8