Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
It is proved for Abelian groups that the Reidemeister coincidence number of two endomorphisms ϕ and ψ is equal to the number of coincidence points of ϕ̂ and ψ̂ on the unitary dual, if the Reidemeister number is finite. An affirmative answer to the bitwisted Dehn conjugacy problem for almost polycyclic groups is obtained. Finally, we explain why the Reidemeister numbers are always infinite for injective endomorphisms of Baumslag-Solitar groups.
Słowa kluczowe
Kategorie tematyczne
- 55M20: Fixed points and coincidences
- 43A30: Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
- 37C25: Fixed points, periodic points, fixed-point index theory
- 20E45: Conjugacy classes
- 47H10: Fixed-point theorems
- 22D10: Unitary representations of locally compact groups
- 54H25: Fixed-point and coincidence theorems
- 22D25: C * -algebras and W * -algebras in relation to group representations
Czasopismo
Rocznik
Tom
Numer
Strony
31-42
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Instytut Matematyki, Uniwersytet Szczeciński, ul. Wielkopolska 15, 70-451 Szczecin, Poland
- Boise State University, 1910 University Drive, Boise, ID 83725-155, USA
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc85-0-2