Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
We study the solvability in anisotropic Besov spaces $B_{p,q}^{σ/2,σ}(Ω^T)$, σ ∈ ℝ₊, p,q ∈ (1,∞) of an initial-boundary value problem for the linear parabolic system which arises in the study of the compressible Navier-Stokes system with boundary slip conditions.
The proof of existence of a unique solution in $B_{p,q}^{σ/2 + 1,σ + 2}(Ω^T)$ is divided into three steps:
1° First the existence of solutions to the problem with vanishing initial conditions is proved by applying the Paley-Littlewood decomposition and some ideas of Triebel. All considerations in this step are performed on the Fourier transform of the solution.
2° Applying the regularizer technique the existence is proved in a~bounded domain.
3° The problem with nonvanishing initial data is solved by an appropriate extension of initial data.
The proof of existence of a unique solution in $B_{p,q}^{σ/2 + 1,σ + 2}(Ω^T)$ is divided into three steps:
1° First the existence of solutions to the problem with vanishing initial conditions is proved by applying the Paley-Littlewood decomposition and some ideas of Triebel. All considerations in this step are performed on the Fourier transform of the solution.
2° Applying the regularizer technique the existence is proved in a~bounded domain.
3° The problem with nonvanishing initial data is solved by an appropriate extension of initial data.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
567-612
Opis fizyczny
Daty
wydano
2008
Twórcy
autor
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, pl. Politechniki 1, 00-661 Warszawa, Poland
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc81-0-36