EN
If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf{||x**-x||: x ∈ C} be the distance from x** to C and d̂(A,C) = sup{d(a,C): a ∈ A}. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) $d̂(\overline{co}^{w*}(K),X) ≤ 2d̂(K,X)$ and, if K ∩ X is w*-dense in K, then $d̂(\overline{co}^{w*}(K),X) = d̂(K,X)$; (ii) if X fails to have a copy of ℓ₁(ℵ₁), then $d̂(\overline{co}^{w*}(K),X) = d̂(K,X)$; (iii) if X has a 1-symmetric basis, then $d̂(\overline{co}^{w*}(K),X) = d̂(K,X)$.