Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We study curves in Sl(2,ℂ) whose tangent vectors have vanishing length with respect to the biinvariant conformal metric induced by the Killing form, so-called null curves. We establish differential invariants of them that resemble infinitesimal arc length, curvature and torsion of ordinary curves in Euclidean 3-space. We discuss various differential-algebraic representation formulas for null curves. One of them, a modification of the Bianchi-Small formula, gives an Sl(2,ℂ)-equivariant bijection between pairs of meromorphic functions and null curves. The inverse of this formula is also differential-algebraic. The other one is based on an integral formula deduced from that of R. Bryant, using certain natural differential operators on Riemannian surfaces that we introduced in [7] for differential-algebraic representation formulas of curves in ℂ³. We demonstrate some commands of a Mathematica package that resulted from our investigations, containing algebraic and graphical utilities to handle null curves, their invariants, representation formulas and associated surfaces of constant mean curvature 1 in ℍ³, taking into consideration several models of ℍ³.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
221-242
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Institute of Mathematics, Humboldt University, Sitz: Rudower Chaussee 25, 10099 Berlin, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc69-0-18