Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let T be a multicyclic operator defined on some Banach space. Bounded point evaluations and analytic bounded point evaluations for T are defined to generalize the cyclic case. We extend some known results on cyclic operators to the more general setting of multicyclic operators on Banach spaces. In particular we show that if T satisfies Bishop's property (β), then
$ℬ_a = ℬ ∖ σ_{ap}(T)$.
We introduce the concept of analytic structures and we link it to different spectral quantities. We apply this concept to retrieve in an easy way a theorem of D. Herrero and L. Rodman: the set of cyclic n-tuples for a multicyclic operator T is dense if and only if $ℬ_a = ∅$.
$ℬ_a = ℬ ∖ σ_{ap}(T)$.
We introduce the concept of analytic structures and we link it to different spectral quantities. We apply this concept to retrieve in an easy way a theorem of D. Herrero and L. Rodman: the set of cyclic n-tuples for a multicyclic operator T is dense if and only if $ℬ_a = ∅$.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
199-217
Opis fizyczny
Daty
wydano
2005
Twórcy
autor
- Université Lille 1, UFR de Mathématiques, UMR-CNRS 8524, Bât. M2, F-59655 Villeneuve Cedex, France
autor
- Université Lille 1, UFR de Mathématiques, UMR-CNRS 8524, Bât. M2, F-59655 Villeneuve Cedex, France
autor
- Département de Mathématiques, et Informatique, Faculté des Sciences de Rabat, BP 1014 Rabat, Maroc
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc67-0-16