Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A nonlocal model of phase separation in multicomponent systems is presented. It is derived from conservation principles and minimization of free energy containing a nonlocal part due to particle interaction. In contrast to the classical Cahn-Hilliard theory with higher order terms this leads to an evolution system of second order parabolic equations for the particle densities, coupled by nonlinear and nonlocal drift terms, and state equations which involve both chemical and interaction potential differences. Applying fixed-point arguments and comparison principles we prove the existence of variational solutions in standard Hilbert spaces for evolution systems. Moreover, using some regularity theory for parabolic boundary value problems in Hölder spaces we get the unique solvability of our problem. We conclude our considerations with the presentation of simulation results for a ternary system.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
153-164
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Weierstrass Institute of Applied Analysis and Stochastics, Mohrenstrasse 39, D-12559 Berlin, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc66-0-10