PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 57 | 1 | 109-134
Tytuł artykułu

Natural algebraic representation formulas for curves in ℂ³

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider several explicit examples of solutions of the differential equation Φ₁'²(z) + Φ₂'²(z) + Φ₃'²(z) = d²(z) of meromorphic curves in ℂ³ with preset infinitesimal arclength function d(z) by nonlinear differential operators of the form (f,h,d) → V(f,h,d), V = (Φ₁,Φ₂,Φ₃), whose arguments are triples consisting of a meromorphic function f, a meromorphic vector field h, and a meromorphic differential 1-form d on an open set U ⊂ ℂ or, more general, on a Riemann surface Σ. Most of them are natural in the sense of 'natural operators' as considered in [8].
The special case d(z) = 0 related to minimal curves in ℂ³ and minimal surfaces in ℝ³ is of main interest. We start with the invariant construction of a sequence $V^{(n)}$ of natural operators assigning to each pair (f,h) consisting of a meromorphic function f and a meromorphic vector field h on Σ a minimal curve $V^{(n)}(f,h): Σ → ℂ³$. The operator $V^{(3)}$ is bijective and equivariant on a generic set of pairs (f,h).
Algebraic representation formulas of minimal surfaces that arise from evolutes and caustics of curves in ℝ² in connection with the Björling representation formula are discussed.
We apply the computer algebra system Mathematica to handle big algebraic expressions describing these differential operators and to provide graphical examples of minimal surfaces produced by them.
Słowa kluczowe
Twórcy
  • Institute of Mathematics, Humboldt University, Rudower Chaussee 25, 10099 Berlin, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc57-0-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.