Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In 1889 A. Markov proved that for every polynomial p in one variable the inequality $||p'||_{[-1,1]} ≤ (deg p)² ||p||_{[-1,1]}$ is true. Moreover, the exponent 2 in this inequality is the best possible one. A tangential Markov inequality is a generalization of the Markov inequality to tangential derivatives of certain sets in higher-dimensional Euclidean spaces. We give some motivational examples of sets that admit the tangential Markov inequality with the sharp exponent. The main theorems show that the results on certain arcs and surfaces, which have been proved earlier for the uniform norm, can be generalized to $L^p$ norms.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
183-193
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Institute of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-bc107-0-13