EN
For any link and for any modulus m we introduce an equivalence relation on the set of non-trivial m-colorings of the link (an m-coloring has values in Z/mZ). Given a diagram of the link, the equivalence class of a non-trivial m-coloring is formed by each assignment of colors to the arcs of the diagram that is obtained from the former coloring by a permutation of the colors in the arcs which preserves the coloring condition at each crossing. This requirement implies topological invariance of the equivalence classes. We show that for a prime modulus the number of equivalence classes depends on the modulus and on the rank of the coloring matrix (with respect to this modulus).