EN
We prove that the Tree Property at ω₂ together with BPFA is equiconsistent with the existence of a weakly compact reflecting cardinal, and if BPFA is replaced by BPFA(ω₁) then it is equiconsistent with the existence of just a weakly compact cardinal. Similarly, we show that the Special Tree Property for ω₂ together with BPFA is equiconsistent with the existence of a reflecting Mahlo cardinal, and if BPFA is replaced by BPFA(ω₁) then it is equiconsistent with the existence of just a Mahlo cardinal.