Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A set A of natural numbers is finitely embeddable in another such set B if every finite subset of A has a rightward translate that is a subset of B. This notion of finite embeddability arose in combinatorial number theory, but in this paper we study it in its own right. We also study a related notion of finite embeddability of ultrafilters on the natural numbers. Among other results, we obtain connections between finite embeddability and the algebraic and topological structure of the Stone-Čech compactification of the discrete space of natural numbers. We also obtain connections with nonstandard models of arithmetic.
Słowa kluczowe
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
195-206
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Mathematics Department, University of Michigan, Ann Arbor, MI 48109, U.S.A.
autor
- Dipartimento di Matematica, Università di Pisa, 56127 Pisa, Italy
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ba8024-1-2016