EN
We study integer partitions with respect to the classical word statistics of levels and descents subject to prescribed parity conditions. For instance, a partition with summands $λ₁ ≥ ⋯ ≥ λ_k$ may be enumerated according to descents $λ_i > λ_{i+1}$ while tracking the individual parities of $λ_i$ and $λ_{i+1}$. There are two types of parity levels, E = E and O = O, and four types of parity-descents, E > E, E > O, O > E and O > O, where E and O represent arbitrary even and odd summands. We obtain functional equations and explicit generating functions for the number of partitions of n according to the joint occurrence of the two levels. Then we obtain corresponding results for the joint occurrence of the four types of parity-descents. We also provide enumeration results for the total number of occurrences of each statistic in all partitions of n together with asymptotic estimates for the average number of parity-levels in a random partition.